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Synopsis 

The representation and interpretation of dynamic mechanical properties of hetero- 
geneous polymer-polymer composites are discussed in terms of equivalent mechanical 
models and the viscoelastic form of the well-known Kerner equation. Model parameters 
calculated from dispersed phase volume fraction and matrix Poisson’s ratio (using the 
Kerner equation) are in fairly good agreement with experimental values for systems 
comprising soft inclusions in a hard matrix. The effects of partial phase inversion on 
dynamic properties are discussed in terms of an extension of the Kerner equation. 
Model calculations indicate that the in-phase component of the complex modulus depends 
primarily on dispersed phase volume concentration, while the out-of-phase component 
depends on both the concentration and the morphology of the dispersed phase. Al- 
though substantial information about the microstructure of polymer-polymer composites 
can in principle be deduced from dynamic measurements, quantitative correlation be- 
tween dynamic properties and use properties such as impact strength (which may have a 
quite different dependence on structural parameters) is probably fortuitous. 

INTRODUCTION 

Dynamic mechanical properties have been extensively used for the char- 
acterization of heterogeneous polymer systems such as semicrystalline 
polymers, block and graft copolymers, and blends of incompatible polymers 
(Bohnl and Ferry2 give many examples). In  these systems, each type of 
region experiences its own transitions; changes in composition and mor- 
phology are reflected in isochronal viscoelastic properties by changes in the 
breadth, location, and intensity of the observed transitions. Thus, in the 
case of impact polystyrene, the intensity of the characteristic dispersed 
phase transition has been ~ o r r e l a t e d ~ , ~  with dispersed-phase morphology- 
and hence indirectly with the efficiency of impact reinforcement by addition 
of rubber. The effects of changes in composition and phase structure on 
the dynamic Young’s modulus of polymer-polymer composites are explored 
in this paper in terms of a modified form of the well-known Kerner equa- 

Although model calculations have recently been published6 which 
indicate that the bounds predicted by one of the published theories for 
the viscoelastic properties of heterogeneous media are qualitatively in 
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agreement with observed behavior, direct comparisons of experimental 
data with theory have generally been restricted to  a consideration of the 
composition dependence of the elastic shear modulus, or of the in-phase 
component of the dynamic shear modulus, at a single temperature (see, for 
example, refs. 3 and 7). A phenomenological representation of the dy- 
namic Young’s modulus in terms of one or the other of two simple mechan- 
ical models has been used by several authors.*-l6 

THEORETICAL 

Elastic Modulus 

The calculation of the elastic properties of multiphase media from the 
properties of the constituent phases is a very old problem; Hashin” and 
Nielsen20 have given extensive reviews. More recently, the analogous 
viscoelastic calculation has been ~ n d e r t a k e n . ~ l - ~ ~  Exact upper- and lower- 
bound expressions for the elastic moduli have been derived’’-l9; similar 
bounds can also be written for viscoelastic moduli using the correspondence 
principle. (The correspondence principle states that expressions for the 
complex moduli of composites may be obtained by replacement of phase 
elastic moduli by phase complex moduli in exact expressions for the cor- 
responding elastic moduli.) The bounds are reasonably close when the 
phase moduli are not greatly different. However, shear moduli of the 
constituent phases of polymer-polymer composites may differ by two or 
more orders of magnitude; in such cases, approximate but single-valued 
expressions are more useful for comparison with experiment. 

In  1956, Kerners presented expressions for the gross bulk and shear 
moduli of a multicomponent suspension. For two components, Kerner’s 
result for shear modulus may be written in the form 

where G is elastic shear modulus, v is the volume concentration of inclusions, 
subscript m denotes a matrix property, subscript i denotes an inclusion 
property, and a is a function of v,, the Poisson ratio of the matrix: 

(2) = 2(4 - 5 vn)/(7 - 5 v,). 

The result stated in eq. (1) has appeared several times in the literature. 
It has been obtained by a somewhat different approach by Uemara and 
TakayanagiZ4 who cite similar results of 0 k a n 0 . ~ ~  For inclusions stiffer 
than the matrix, Kerner’s results are formally identical to the lower-bound 
expressions derived by Hashin and Shtrikman.Ig Halpin and Tsai26sn 
write eq. (1) in a somewhat different form, which more clearly displays the 
concentration dependence of the composite modulus and which is useful 
for extension to nonspherical inclusions. The present form is more con- 
venient for manipulations involving complex moduli. 
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Dynamic Modulus 

Based on a composite sphere model, ChristensenZ1 has derived an ap- 
proximate expression for complex shear modulus : 

G*/Gm* = 1 + YIOV/(YZG + ~ 3 0 ~ )  

~ i c  = 15(1 - v,)(Gr*/G,* - 1) 

Y ~ G  = (7 - 5vn) + 2 ( 4  - 5vm)Gt*/Gm* 

7 3 0  = - 2 ( 4  - 5vm)(Gt*/Gm* - 1) 

(34  

(3b) 

(34 

( 3 4  

where 

and G* = G' + iG" is the dynamic shear modulus. The viscoelastic 
Poisson's ratio-in general a complex function of frequency- is assumed to 
be a real constant. Substitution of the Y t G  into eq. (3a) with subsequent 
rearrangement of terms leads to 

~- G* 
G,* 

(1 - v)G,* + (a + v ) G ~ *  
(1 + av)G,* + a ( l  - v)Gi*' 

- (4) 

Equation (4) has the same form as eq. (1)' except that dynamic shear mod- 
uli replace elastic shear moduli. The result stated in eq. (4) was previously 
obtained by Uemara and TakayanagiZ4 by application of the correspon- 
dence principle to their form of eq. (l), with the implicit assumption that 
Poisson's ratio is a real constant. 

An expression for the dynamic Young's modulus E* can readily be ob- 
tained by recalling that 

E* = 2(1 + v*)G* (5 )  

where v* = v' + iv" is the viscoelastic Poisson's ratio. If it is assumed that 
v* = v' = v, where v is elastic Poisson ratio, then substitution of eq. (4) 
into eq. (5) yields 

where 

Explicit expressions for E', E", and theloss tangent, tan 6 = E"/E', are 
given in Appendix I. 

Mechanical Models 

Takayanagi and co-~orkers '~ and a number of other authorss-'0*'6 have 
reported considerable success in representing the viscoelastic properties of a 
variety of heterogeneous materials in terms of simple mechanical models 
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comprising elements (assumed to have the viscoelastic properties of the 
constituent phases of the composite medium) connected partly in series 
and partly in parallel. 

I n  essence, these models represent attempts to construct average re- 
sponse curves intermediate between the bounds given by simple series and 
parallel rules of mixing. The parameters X and cp can be interpreted as 
representing the extent of series and parallel character of the observed 
behavior. Thus, the larger cp, is the more closely the models approach a 

Two such models are illustrated in Figure 1. 

MODEL1 

Fig. 1. Equivalent mechanical models for the representation of dynamic mechanical 
Regions m are assumed to have the properties of properties of two-phase systems. 

the continuous phase; regions i, those of the dispersed phase. 

simple parallel connection; similarly, the larger X is, the more closely the 
models approach a simple series connection. With appropriate choice of 
parameters, these models are equivalent to each other and also to  eq. (4). 
However, in general, XI # Xz and cp1 # cp2 for a given response. 

Under the assumption that u* = v' = v, the dynamic shear modulus for 
model 1 of Figure 1 is 

cp1 G* = + (1 - XI)G,* 4- G,* (7) 
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where Xlpl = v. 
eters cpl and X I  are given by : 

Equation (7) reduces to eq. (4) provided that the param- 

cp1 = v (1 + a)/(a + v) 
X1 = (a + v)/(l + a) 

(8) 

(9) 

where a is defined by eq. (2). 
Similarly for model 2, the dynamic shear modulus is given by 

where X z q 2  = v. Equation (10) reduces to eq. (4) provided that the param- 
eters lp2 and Xz are given by 

lpz = (1 + av)/(l + a) 
Xz = v(l + a)/(l + av). 

Equations (10) and (7) are also equivalent; thus, for a given response, cp1 

and X1 are related to lpz and Xz by 

A1 = 1 + v - lpz (13) 

Xl lp l  = Xzlpz = v. (14) 

Models 1 and 2 have generally been applieds-l6 to dynamic Young’s mod- 
ulus data; for this purpose, expressions identical in form to eqs. (7) and (10) 
have been used with G*, Gm*, and Gi* replaced by E*, Em*, and Ei*, re- 
spectively. These expressions are correct provided that v = v, = v i ;  
under this condition, the expressions for E* analogous to eqs. (7) and (10) 
are entirely equivalent to eq. (6), and eqs. (8) and (9) and (11) to (14) are 
still applicable. Takayanagi et al.14 have given expressions similar to eqs. 
(8) and (9) for the special case v = v, = v i  = 0.5. 

RESULTS AND DISCUSSION 

Comparison with Experimental Data 

Uemara and TakayanagiZ4 have used an approximate form of eq. (6), ob- 
tained by assuming that v = V, = vi = 0.5, to represent dynamic Young’s 
modulus data on a styrene-acrylonitrile copolymer interpolymerized with 
polybutadiene particles. At v = 0.2, excellent agreement between theory 
and experiment was found. At larger volume fractions of rubber-the 
range studied was 0.2 < v < 0.5-there was some discrepancy between 
theory and experiment; part of this discrepancy may be attributed to 
the fact that the volume fraction of rubber and the volume fraction of dis- 
persed phase were assumed to be equal. As the model calculations presented 
later illustrate, calculated values of E* are very sensitive to the volume frac- 
tion and morphology of the dispersed phase. Thus, the theoretical calcula- 
tion should ideally be based either on independent information regarding the 
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Fig. 2. In-phase component of dynamic shear modulus and loss tangent vs. tempere 
ture for an impact polystyrene and its separated phases (from ref. 7 ) .  Dotted line, 
insoluble gel; dashed line, soluble part; circles, data on composite; solid line, calculated 
from eq. (4) assuming vrn = 0.35. 

morphology of the composite or on dynamic data obtained on the isolated 
phases of the composite. Although the latter alternative may be ques- 
tioned on the grounds that the properties of a phase isolated from a com- 
posite may not be representative of the properties of that phase within the 
composite, a rather good representation of composite behavior is obtained 
by application of eq. (4) to such data. Thus, we have analyzed dynamic 
shear modulus data obtained by Cigna' on an impact polystyrene and its 
constituent phases, isolated by solvent extraction, in terms of eq. (4); the 
results are presented in Figure 2. Although the calculated values of G' are 
somewhat high (and the corresponding values of the loss tangent, some- 
what low) in the temperature range between the glass transition regions 
characteristic of the component polymers, the location and magnitude of 
the loss tangent maximum corresponding to the dispersed phase are cor- 
rectly predicted. The shape of the modulus-temperature curve is given 
with substantial accuracy. 

Another comparison of experiment with theory is realized by comparing 
published values of the equivalent mechanical model parameters cp and X 
with values calculated from v and v,,,, using the equations given previously. 
We have analyzed two sets of data in this way. Takayanagiet al.12s14 have 
represented dynamic Young's modulus data on several rubber-modified 
polystyrene and styrene-acrylonitrile copolymers in terms of model 1, 
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TABLE I 
Calculated and Empirical Values of Model Parameters 

V 

0. 36b 
0. 23b 
0.44b 
0.49b 
0.3c 
0.5" 
0.7" 

A1 

0.6 
0.6 
0.775 
0.7 
0.633" 
0. 694e 
0.905" 

(01 

0.6 
0.38 
0.568 
0.7 
0. 474e 
0.7200 
0. 774e 

(02 

0.473d 
0. 365d 
0. 662d 
0.62d 
0.45 
0.62 
0.88 

0. 761d 
0. 63d 
0. 665d 
0.7gd 
0.667 
0.806 
0.795 

0.48 
0.285 

0.54 
0.30 
0.52 
8.9 

-0.957 

a Calculated from A; and 91, or AZ and (PZ, and v using eqs. (2) and (8) or (2) and ( I  1). 
Data of Takayanagi et al.12J4 
Uata of Matsuo et al.110 
Calculated from A1 and cpl using eqs. (13) and (14). 
Calculated from and p 2  using eqs. (13) and (14). 
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Fig. 3. Comparison of experimental model parameters with values calculated from 
Error bars indicate 

Open symbols, data of ref. 10; filled 
In each case, circle = A; 

eqs. (2), (8), (9), (ll), and (12), as appropriate, with vm = 0.35. 
effect of allowing vm to vary between 0.2 and 0.5. 
symbols, data of ref. 12; half-filled symbols, data of ref. 14. 
square = 9. 

using the parameters given in Table I. Matsuo et a1.l0 represented similar 
data on a two-phase polyacrylate-poly (urethane urea) system in terms of 
model 2; these parameters are also given in Table I. Based on the assump- 
tion the v, = 0.35 in each case, we have calculated values of (a and X; the 
results are summarized graphically in Figure 3. Limits on the calculated 
values of cp and X obtained by assuming 0.2 5 v, 5 0.5 are indicated by 
error bars. For the most part, there appears to be good agreement between 
calculated and empirical values. 

Since models 1 and 2 have been shown to be equivalent, Table I includes 
not only the published experimental values of X and cp for the model origi- 
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nally used, but also calculated values of h and cp for the alternate model. 
We conclude that the interpretation of these parameters in terms of series 
and parallel character of response is dubious at best since the qualitative 
interpretation of relative character can be reversed by an essentially trivial 
change in the model used. 

A more sensitive comparison of the mechanical model representation with 
the theoretical result involves the calculation of vm from the empirical values 
of cp and A. Results of this calculation are summarized in Table I .  The 
agreement between calculated and expected values of v, is not very good; 
two of the values obtained are totally unreasonable. However, the calcu- 
lated values of vm are very sensitive to changes in cp and h, whereas the 
calculated values of E* are not very sensitive to changes in vm, as will be 
demonstrated subsequently. Thus, the calculated value of v, depends 
strongly on the way in which the curve fitting is performed. Generally, 
the procedure involves comparison of calculated curves of E' and E" with 
experimental data; the values of cp and h are adjusted to achieve as close a 
match as possible to E' and E H  simultaneously. In applying the theoreti- 
cal result to data on systems containing a dispersed rubber phase, it is found 
that the loss tangent curve is reasonably accurately reproduced, while the 
calculated values of E' are invariably too high. It is concluded that a repre- 
sentation in terms of eq. (6) is essentially equivalent to the published repre- 
sentation in terms of model 1 or model 2 for all but two of the materials dis- 
cussed. The exceptions can probably be attributed to partial phase inver- 
sion; this is almost certainly the case for the v = 0.7 data of Matsuo et al., 
and may also apply to the data of Takayanagi et al. at  v = 0.44. In  both 
cases, the value of was determined by overall composition rather than by 
an independent analysis of relative phase volumes. 

All of the systems discussed so far are of the general type soft inclusions/ 
hard matrix. For the inverse case-hard inclusions/soft matrix-the pres- 
ent representation apparently fails. For example, shear modulus data of 
Schwarzl et al.29 on a series of polyurethane-sodium chloride composites are 
reported to be well represented by a theory due to van der P ~ e l . ~ ~  Al- 
though the correctness of both the theoretical calculation of shear modulus 
and the approximations made in comparing the theory with experimental 
data have been questionedlZ2 the fact remains that a substantially greater 
dependence of shear modulus on filler concentration is observed than can be 
accounted for in terms of eq. (4). Similarly, data of Kraus et a1.I6 on a 
polystyrene-reinforced styrene-butadiene copolymer could not be ade- 
quately represented by model 1 with parameters calculated from eqs. (8) 
and (9) with vm = 0.5. 

On the basis of these comparisons with experimental data, eq. (4), or 
equivalently eq. (6), represents dynamic data on a variety of systems of the 
type soft inclusions/hard matrix reasonably well. Although the represen- 
tation is somewhat in error when examined in detail, the general features and 
trends indicated by the experimental data are correctly reproduced. Sys- 
tems of the type hard inclusions/soft matrix apparently cannot be repre- 
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sented very well in these terms. In  the remainder of this section, some 
possible origins of the observed discrepancies between theory and experi- 
ment will be explored. 

(1) 
interactions between particles can be ignored; (2)  Poisson's ratio is a real 
constant; (3) there is perfect adhesion between matrix and inclusions; and 
(4) the size and spatial distributions of the inclusions are random. The 
first of these assumptions restricts applicability of the calculation to small 
concentrations-strictly speaking, no more than a few per cent. Niel- 
sen,31,32 and Lewis and N i e l ~ e n ~ ~  have considered modifications to eq. (1) 
which introduce corrections for maximum packing fraction of filler and de- 
viation of particle shape from sphericity. These corrections are particu- 
larly important for particles stiffer than the matrix and allow a good fit to 
data on such composites to be obtained; they will be further considered 
in a subsequent paper.34 

The assumption that Poisson's ratio is a real constant is, of course, in- 
correct for real viscoelastic materials; however, the out-of-phase component 
of v* (= v' + iv") is rather small. On the basis of some measurements 
reported by T h e o c a r i ~ , ~ ~  v" if of the order -0.1 vG"/G' 6 v c  6 -0.01 
vG"/G', where v is the elastic value of Poisson's ratio. We have performed 
model calculations based on eq. (4) and the data presented in Figure 3, 
assuming Poisson's ratio to be complex and assuming v" to lie within the 
above specified range. The changes observed in the calculated values of 
G', G", and the loss tangent were entirely negligible. 

The assumption of perfect adhesion at  the matrix-inclusion interfaces is 
an important one; the effect of imperfect adhesion in the elastic case has 
been studied by Sat0 and F u r u k a ~ a . ~ ~ , ~  As expected, the nature of the 
interfacial bond has a profound influence on the elastic modulus, especially 
for the hard filler/soft matrix case. For no adhesion, the properties ap- 
proach those of a foam. In the case of a soft filler/hard matrix system, the 
principle effect should be in the out-of-phase component of the dynamic 
modulus. However, for application of the theory to rubber-modified 
plastics, in which there is usually substantial chemical grafting between the 
phases, the possibility that poor interfacial adhesion will affect the small- 
strain dynamic properties is remote. 

Finally, it is almost invariably assumed in the application of expressions 
such as eq. (4) that the effective properties of the constituent phases of the 
composite may be replaced by their properties in bulk. This assumption 
will clearly be invalid if the inclusions are under a hydrostatic tension or 
compression (perhaps induced by differential thermal expansion) 37,38 suf- 
ficient to alter their mechanical response. Generally, it is also assumed 
that the structure of the composite is simple, so that the properties of the 
individual phases can be taken to be the bulk properties of the pure poly- 
meric constituents and the phase volumes can be calculated from the overall 
composition. This assumption is clearly incorrect for any multicomponent 
system in which a partial phase inversion takes place. High-impact poly- 

Among the assumptions made in the derivation of eq. (4) are these: 



54 DICKIE 

styrene, which is well known to have a complicated phase structure in 
which a part of the polystyrene is occluded in the dispersed rubbery phase, 
is a familiar example. The effect of changes in phase morphology and the 
dependence of the complex modulus on v and Y, are discussed in the next 
section. 

Model Calculations 

I n  order to illustrate the functional dependence of eqs. (4) and (6) on 
v,  Y,, and effective phase properties, model calculations have been performed 
using isochronal Young’s modulus data obtained at 110 Hz on poly(methy1 
methacrylate) and on a crosslinked acrylic rubber prepared by copoly- 
merization of butyl acrylate with 1,3-butylene dimethacrylate in a mole 
ratio of 95: 5. Experimental methods and polymerization conditions are 
described elsewhere.34 -Although the calculations are based on a particular 
pair of polymers, the conclusions reached are more dependent on the func- 
tional form of the equations than on the specific properties of these poly- 
mers. Similar behavior should be expected for other pairs of materials 
which have widely separated glass transitions. 

Inclusions of the two types schematically illustrated in Figure 4 are con- 
sidered: simple inclusions of one polymer in the other, and composite 

I 

Fig. 4. Schematic sketch of particulate composites with simple inclusions (a) and com- 
posite inclusions (b). 
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inclusions in which part of the polymer forming the continuous phase is 
occluded by the polymer forming the dispersed phase. In  the latter case, 
the calculation is performed in two stages. The properties of the inclusions 
are calculated using eq. (6) by assuming simple inclusion geometry; the 
values so obtained are then used in conjunction with eq. (6) to compute the 
properties of the composite. Similar calculations, based on the upper- and 
lower-bound expressions given by Hashin28 for the shear modulus of an 
assemblage of composite spheres, have recently appeared for the glassy 
matrix-simple rubbery inclusion and glassy matrix-composite rubbery 
inclusion cases. Although the same general trends are observed, the spread 
between the bounds precludes a quantitative comparison with experimental 
data and makes difficult an assessment of the relative importance of, for 
example, changes in dispersed phase volume fraction on the one hand versus 
changes in morphology on the other. 

Simple Inclusions 
Dependence of E* on v and Phase Morphology. Figures 5 and 6 present 

E* data on the model rubber and glass used for the present calculations. 
Calculated curves for the two simple inclusion cases-glass phase con- 
tinuous and rubber phase continuous-at several values of v are included in 
these figures. The calculation has been performed using eq. (6) under the 
assumption that y = 1 and approximating Poisson's ratio for each material 
as 0.35 at temperatures below and as 0.5 at temperatures above the loss 
tangent maximum corresponding to the glass transition. 

As expected, the calculated values of E' tend to lie closest to the curve 
describing the continuous phase, even a t  unrealistically high values of 
dispersed phase volume fraction. An isothermal section through this plot 
at some intermediate temperature, say 50°C, would generate the familiar 
Kerner equation plot of modulus versus composition as given, for example, 
by Nielsen.20 The temperature dependence of E' in the region between the 
two transition regions parallels that of the material forming the continuous 
phase. 

HashinZ2 has pointed out that the loss tangent predicted by the composite 
sphere model is identical to that of the matrix for porous materials (foams) 
as well as for a material comprising a very rigid filler in a soft matrix. This 
is essentially the behavior observed in Figure 6, except that a highly con- 
centration-dependent loss maximum corresponding to the dispersed phase 
appears. 

The locations of the loss tangent maxima on the temperature scale are 
seen to be somewhat shifted toward lower temperatures for the continuous 
hard phase case, and to higher temperatures for the continuous soft phase 
case. The effect is much more pronounced for the dispersed phase maxima 
than for the continuous phase maxima. A detailed examination of the 
calculation reveals that both the location and the magnitude of the dispersed 
phase loss maxima depend strongly on the ratio E,,,'/E$'; thus, the dispersed 
phase loss maximum for a composite containing inclusions of higher rubbery 
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Fig. 5. In-phase component of dynamic Young's modulus vs. temperature. Upper 
solid curve, poly(methy1 methacrylate); lower solid curve, poly(buty1 acrylate-cc-l,& 
butylene dimethacrylate); dotted curve, calculated from eq. (6) assuming simple rubbery 
inclusions in a glassy matrix; dashed curve, calculated from eq. (6) assuming simple glassy 
inclusions in a rubber matrix. Calculated curves are labeled with the assumed values of 
dispersed-phase concentration. 
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Fig. 6. Loss tangent vs. temperature. Key as for Fig. 5. 
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Fig. 7. Effect of changes in vm on calculated values of E' and tan 6 for simple rubbery 
inclusions in a glassy matrix; v = 0.5. Solid curve, vm = 0.35; others as labeled. 

modulus is somewhat higher a t  a given value of v, while the location of the 
maximum is shifted slightly to  higher temperaturcs. 

Qualitatively, the loss tangent curves of the composites are identical to  
those of the corresponding continuous phase with a small additive contribu- 
tion attributable to  the dispersed phase. The apparent contribution of the 
dispersed phase to  the composite Ioss tangent, especially on a logarithmic 
scale, depends on the value of the continuous-phase loss tangent. Thus, in 
Figure 6, for the continuous glass phase case, the apparent dispersed-phase 
loss maxima would be much smaller if the transition temperature of the 
dispersed-phase polymer were, say, 50°C higher. I n  fact, the absolute 
contribution of the dispersed phase to  the loss tangent would also be smaller, 
since the magnitude of the dipersed-phase contribution is a function of the 
difference between the dispersed-phase and continuous-phase loss tangents. 
Explicit expressions for the loss tangent are given in Appendix I. 

To perform the calculations described, it is 
necessary to assume values for vm and to evaluate the importance of v m  to 
the results obtained. Model calculations assuming0.2 5 vnl 5 0.5 have been 
performed. The results generally indicate only a slight dependence on vm. 

One example is presented in Figure 7 for the case v = 0.5, /3 = y = 1, with 
the hard phase assumed to  be continuous. This calculation is equivalent to  
one based on model 1 of Figure 1 with the parameters cp1 and XI assuming 
values 0.715 2 p1 2 0.667 and 0.700 _< A, _< 0.750. The changes in h" and 
the loss tangent wrought by this variation are seen to  be rather small. 
Model calculations involving deviations of p from unity have also been 
performed; calculated values of modulus and loss tangent are relatively 

Dependence of E* on v,. 
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insensitive to changes in P. In  terms of eq. (4) or (6), the specific value 
chosen for v, is seen to be of minor importance. The mechanical models of 
Figure 1 are found to be a reasonable approximation to eq. (6) for model 
parameters corresponding to physically reasonable values of Poisson’s ratio. 

Composite Inclusions 

Since the location and magnitude of the dispersed phase maximum depend 
strongly on phase volume and on the ratio E,‘/Et’, it is to be expected that 
the behavior of a material containing composite inclusions will differ sub- 
stantially from that of a material containing simple inclusions. Two sets of 
calculations have been performed: in the first, overall composition is held 
constant while phase volume and hence morphology are varied; in the 
second, the phase volume is held constant while overall composition and 
hence, again, morphology are varied. 

Constant Composition. Figures 8 and 9 present results obtained assum- 
ing constant composition but variable phase volume. The figures are 
largely self-explanatory. It will be noted that, in each case, the dispersed- 
phase loss tangent maximum is highly phase-volume dependent. The 
continuous-phase loss tangent maximum is less phase-volume dependent, 
but displays a substantial broadening which resolves into a double maxi- 
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Fig. 8. Dependence of E‘ on dispersed-phase volume fraction and morphology assum- 
ing composite inclusions and constant overall composition. Upper curves, glassy con- 
tinuous phase, total rubber content = 25 vol-%; lower curves, rubber continuous phase, 
total glass content = 25 voI-%; solid curves, simple inclusions; broken curves, composite 
inclusions. Labels indicate dispersed-phase volume fraction. 
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mum at sufficiently high phase volumes. Although the calculations have 
been carried to unrealistically high values of phase volume, the broadening 
indicated at  lower phase volumes is clearly an early manifestation of the 
double maximum observed a t  higher phase volumes. These effects are 
attributable to the individual contributions of the continuous-phase poly- 
mer present (1) in the continuous phase and (2) as subinclusions in the dis- 
persed-phase regions. The morphology-dependent temperature separation 
of loss tangent maxima previously observed for simple inclusions naturally 
gives rise to the broadened maxima observed for the composite inclusions. 

0- 

- 

- 

I I I I I I I 1 

- -2 

Phase 

I I 1 I I I 1 1 I 
-100 -50 0 50 100 150 200 

TEMPERATURE, O C  

Fig. 9. Dependence of tan 6 on dispersed-phase volume fraction and morphology as 
suming composite inclusions and constant overall composition. Key as for Fig. 8. 

The level of the in-phase component of E* is seen to be highly phase- 
v,olume dependent; it is again observed that the temperature dependence of 
E' away from the dispersed-phase transition region is dominated by the 
temperature dependence of the continuous phase. 

Constant Phase Volume. Figures 10 and 11 present results obtained 
assuming constant phase volume but variable composition. The level of 
E' in the region between the transition regions characteristic of the con- 
stituent phases is insensitive to changes in overall composition, provided 
that the dispersed-phase volume fraction remains constant. This is not 
particularly surprising, but simply arises from the fact that there is always a 
large difference between the values of E' for the continuous phase and the 
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Fig. 10. Dependence of E' on overall composition and morphology assuming constant 
dispersed-phase volume fraction. Dispersed-phase volume fraction = 0.5. Labels 
indicate overall volume fraction glass for the rubber continuous-phase curves, and overall 
volume fraction rubber for the glass continuous-phase curves. 
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Fig. 11. Dependence of tan 8 on overall composition and morphology assuming constant 
dispersed-phase volume fraction. Key as for Fig. 10. 

dispersed phase over this temperature range. Below the transition region 
of the rubber and above the transition region of the glass, E' of the com- 
posite does become composition dependent; in these regions, the moduli of 
the two phases are more nearly comparable. 

The dispersed-phase loss tangent maximum is, on the other hand, highly 
composition dependent. The effect is most pronounced for materials 
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having a continuous glassy phase, and for these materials it is seen that the 
magnitude of the low-temperature loss peak can be substantially increased 
by decreasing the overall rubber content a t  constant dispersed-phase vol- 
ume fraction. 

An implicit assumption of the calculations presented for composite inclu- 
sions is that the inclusions are uniform in composition and properties. The 
composite inclusions in real materials would probably vary widely in com- 
position (as in Fig. 4). Such a distribution in composition would be ex- 
pected to result in broadened transitions, analogous to those observed for 
copolymers which are not strictly uniform in composition. 

Other Changes in Effective Properties 

The foregoing model calculations have served to illustrate the effect on 
the dynamic mechanical properties of changes in effective phase properties 
due to changes in morphology. There are numerous other ways in which 
deviations of effective properties from the properties of the bulk constituents 
can arise; copolymerization effects (in the case of interpolymers) or immobil- 
ization (or plasticization) of some fraction of material in the vicinity of 
phase boundaries immediately come to mind. Copolymerization effects in 
particular should be reflected in changes in the location, intensity, and 
breadth of the observed transitions such as are well documented in the case of 
"random" copolymers; it should be possible to account for such effects by 
introduction of data on appropriate copolymers into the calculations. 

Appendix I 

Equation (6a) can be separated into real and imaginary parts to yield explicit expres- 
sions for E' (the in-phase component of E*, or storage modulus) and for E n  (the out-of- 
phase component of E*, or loss modulus). An expression can also be written for the loss 
tangent (tan6 = E"/E' ) .  We obtain 

C = (1 + ac)2(Em'' + Em'") + ( 1  - ~)'a'f"(Ei'' + Ei'") 

+ 2(1 + a ~ ) ( l  - c)aB(Ei'Em' + Em"Ei") (1-5) 

also 

@ / A )  + (tans),. 
1 - (tan6),(B/A) 

tan6 = E"/E' = 
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The second term in the denominator will generally be small; thus, the loss tangent of the 
composite will be approximately equal to  the matrix loss tangent plus the term B / A ,  
which may be written as 

B / A  = c ( a  + l)*[(tan 8); - (tan 8),J/{(l - c ) ( l  + a c ) [ l  + (tan 8),2](Em’//3Ei‘) 

+ (1 - c ) ( a  + c)a/3[1 + (tan 8)i21(Ei’/Em’) 

+ [ ( I  - cI2a + (a + c)( l  + ac)I[1 + (tan 8Mtan  8) i l ) .  (1-7) 

Equivalent expressions for G‘ and G“ can be obtained by substituting shear moduli for 
Young’s moduli throughout and letting /3 = y = 1. 
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